Our calculations and considerations show that a simple experiment on uniaxial compression turns out to
be rather complicated from the point of view of analysis. The stressed state of a sample is essentially non-
uniform, and the fracture conditions are satisfied first in the nonuniform region of the pattern near the pres-
sure plates of the testing machine. As a result the uniaxial compressive strength is a convenient technical
strength characteristic of a structural sample rather than a characteristic of the material.
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CONVECTIVE EFFECTS IN LIQUID INCLUSIONS DRIFTING
IN NONUNIFORMLY HEATED SOLIDS

Yu. K. Bratukhin UDC 548.5:536.2

§1. We will consider a liquid-filled spherical cavity in an infinite solid mass. The liquid dissolves the
surrounding material and under equilibrium conditions is a saturated solution of concentration Cy. At infinity
let there be a constant horizontal temperature gradient VTe = A. Under these conditions in the gravitational
field g free convective motion develops in the liquid.

We assume that the motion is slow and steady; solid phase can crystallize out of the supersaturated solu-
tion only at the interface between the inclusion and the matrix; the dissolving of the solid in the liquid does not
lead to a change in the volume of the latter; the thermal diffusion and diffusion heat-conduction effects are
negligible [1]. All the parameters (kinematic and dynamic viscosity coefficients v and 71, thermal conductivity
%, thermal diffusivity x, and diffusion coefficient D) of the liquid and the solid are constant. The solubility C;
and the liquid density p depend linearly on temperature T. We assume that the density also depends on the con-
centration C, defined as the ratio of the mass of solid material per unit volume of solution to the mass of that
volume:

p(T, C) = .O(Tm CO) “ - a(C - CO) - S(T - TO)L
Co(T) == Co(To) = (dCo/dTHT — Th).

The nonuniform heating of the walls of the eavity leads to the dissolving of the hotter parts of the solid
and subsequent diffusive and convective mass transfer to the cooler regions, where the solution is supersaturated

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 160-166,
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and part of the matrix material is precipitated on the cavity walls. The inclusion begins {¢ migrate through
the solid. The drift velocity u and the change in the shape of the inclusion must be determined in the course
of obtaining the solution.

The motion of liguid inclusions in crystals in the presence of 2 temperature gradient was studied quan-
titatively in [1-3]. The theoretical estimates of the drift velocity given in those studies do not take convective
effects into account.

Let the motion already be steady at the initial instant t = 0. Then in the reference system associated with
the solid, the distribution of velocities v, pressures p, temperatures T, and concentrations C in the liguid and
temperatures Tg in the solid is given by the convection equations in the Boussinesq approximation:

ov/ot - {vy)v = —yplo + VAV -+ galC — Co) — gB(T — Ty),

divv = 0, éC/ot -- vyC = DAC, (1.1
arlgt - v T = AT, 87,/8t = y AT,,

here and in what follows the subseript "e" denotes that the quantity relates to the solid; functions without a sub~
seript relate to the liquid; g is the acceleration of gravity.

To (1.1) and the conditions at infinity formulated above it is necessary to add the boundary conditions at
the surface of the inclusion. Since, by assumption, the volume of the droplet dees not change, the velocity of
the liquid at the interface with the solid is equal to the drift velocity u. The usual conditions of equality of tem-
peratures and heat and mass fluxes are also imposed. The concentration is equal to the solubility C, at the
corresponding surface temperature.

We now go over to the reference system associated with the drifting cavity. We direct the polar axis z of
the spherical coordinate system (r, ¢, ¢} upward, and make the coordinate origin coincide with the center of
mass of the droplet. The angle ¢ is reckoned from the x axis of the Cartesian coordinate system &, y, z), the
direction of the unit vectors i, j, k being determined by the direction of the temperature gradient A = Aj and the
acceleration of gravity g = —gk. The temperature and concentration are reckoned from the undisturbed values
of the functions at the point at which the center of mass of the droplet is located at the time t in question. Then
the new "primed" functions are related with the old ones as follows:

v=v'+u,T:Aut—i—T', (12)

T,=Aw+T), C= Ca(i + ‘%’Aut) e
We now go over to dimensionless quantities, for which purpose we select as units of length, velocity,
temperature, concentration, pressure, and time the mean radius of the inclusion a, gBa®A/ v, aA, BaA/c,
gBa’Ap, a’/v, respectively. Denoting the dimensionless variables by the same letters but without primes, using
(1.1) and (1.2) we obtzain equations for the dimensionless quantities in the reference system associated with the
center of mass of the droplet:

ovior + Grivy)v = —yp -+ Av + (T — Ok,

Sc 8C/dt + ScGr(Kaj + vyC) = AC, divy = 0, (1.3)
PraT/ot + PrGruj + vyT) = AT,
g 8T /6t + oGr(uj — uyT,) = AT,,

where Pr = v/y and o = v/xe are the Prandtl numbers; Sc = 1/ D is the Schmidt number. The liquid parameter
K = a(dC,/dT) /B characterizes the relation between solubility and temperature. Gr = gBa*A /v? is the Grashof
number,

The presence in the left sides of (1.3) of terms proportional to the drift velocity u is associated with the
choice of reference temperature and concentration. Allowing for these terms leads to the growth of the inclu-
sion. Since experiments have shown [4] that the volume of the inclusion remains constant, these terms can be
neglected.

To (1.3} we add the boundary conditions at infinity Te = rsindsing and at the surface of the cavity r =
R, ¢
v=0,T=1, C=FKT,

(1.4)
dT/on = 9T /on = yun, 8C/8n = oun,



where n is the unit vector of the surface normal R(#, ¢); vy = AHgBa3pe/ vn is the dimensionless specific heat
of solution AH {(y > 0 corresponds to the releage of heat); the parameter p = pega3oz /pDy relates the diffusion
mass transfer at the boundary with the drift velocity; ® = ne/ n is the thermal-conductivity ratio.

We will seek the stationary (9 /8t = 0) solution of problem (1.3), (1.4) in the form of an expansion in
powers of the small parameter Gr [5] (in experiments [2] on the migration of water "droplets" in KC! crystals
the Grashof number was of the order of 107%)

T =Ty5+ G Tyi..., T,=8p+6Gr8; ...,
C=Cy+GrCy+..., u=ug+Gru+..., (1.5)
v=v,+ ..., RO ¢)=1+Grh @ ¢)+...

Substituting (1.5) in (1.3}, (1.4), we obtain

vo=la(l — H)/20(r*— r)r x y(sing-cos ¢),
Ty~ arsin®-sing, 8y= (r - b/r%sind-sing,
Cy= Karsin®.sing; uy== (aK/p}j, & = 3=,
b= (% — 4 -- yH/o)p, ¢~ = 2% - 1 — yHip,
T, = {er 4 (p/28)r— (p/10)r¥)cos &, p = Pra*(l — R)/20. (1.6)
C, = (dr + (s/28)r°— (s/10)r¥)cos ¥, s = Sc Ka*(1 — K)/20,
e = (Pp/140)[17p -+ 9p(2x — Hy/p) — 8Bsyipl,
d = (p/140)[8Kp + 9p(2x +- 1) — 17sHy/pl,

. | 2¢ 4
6= (p— )22 u, —[Kp—s(et Dighk

The function hy(#, ¢) in the expansion of R(J, ¢) is also determined in the course of obtaining the solution and
proves to be equal to zero.

§2. We will consider problem (1.3), (1.4) with the modified condition at infinity Te = —r cos ¢ (heating
from below, A = ~Ak), We will seek the stationary (9 /8t = 0) solution of system of equations (1.3), discarding,
as in Sec. 1, the terms proportional to u in the left sides of the equations. Using boundary conditions (1.4) and

the new condition at infinity, we obtain

v =0, T = —arcos®, C = —FKarcos, 2.1
T,= (—r — b/r¥) cos &, u = [u k.

The constants of integration a, b, and u, were written out in (1.6).

Diffusion solution (2.1) will be unstable at a certain Gry [the Grashof number can be both positive (heating
from below) and negative (heating from above)]. To determine the critical Grashof number Gry we use the
standard procedure of [5]. Linearizing Eqgs. (1.3) with respect to small perturbations of velocity v, pressure p,
temperatures 7 and 7, and concentration ¢, and assuming that all the quantities depend on time tinaccordance

with the law exp (—At), we obtain
~Av = —yp + Av+ (v — o)k,
divy = 0, Agt, — A7, 2.2)
~APrt + PrGrvy? = Arx,
~ASce + Sc GrvygC = Ac.
To (2.2) we add the boundary conditions at the surface of the inclusionr =1,

at ot Y O¢ _
v=0, 1=Tu 5 %G9 KT (2.3)

and at infinity 7o = 0.
We seek the solutions of Egs. (2.2) in the form
v ~ firjrXy(sind-cosg), p = q{r, ) sin @, 2.4

3 ki cos kr
¢~ T~ f(r)sin®-sing, f(r)=§(3’?r7.:__.,‘;_.

Substituting (2.4) in (2.2) and eliminating, as in [6], the pressure, we obtain a homogeneous algebraic
system of equations for the perturbation amplitudes. Equating the determinant of this system to zero, we find
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the equation for the characteristic decrements A:
RaSc(K—1 R K Sc
39 Pr Sc — A3K3 (P - So -- Pr Se) -+ Akt 1 -+ Pr + So + Rasolk—B] _ o[ Bafy K3} o, 2.5

where Ra = a Pr Gr is the Rayleigh number.

The decrement A may be complex A = 6 + iw; § indicates the decay (6 > 0) or growth (6 < 0) of the per-
turbation; w defines their frequency. The neutral line § = 0 corresponds to the boundary of monotonic (w = 0)
or oscillatory (w =0) instability.

We will determine the boundary of monotonic instability, substituting A = 0 in (2.5):
By=0, kyy== = k, 2k*= Ra,(1 — K Sc/Pr). 2.8)
Using (2.4), (2.6) we obtain the general solution of (2.2) satisfying the condition at infinity:
v = {ef(r) 4 cog(r) Irey(sin ¢ X cos @),

T == [—(Ray/k¥(csf — cog) + cgr]sind-sin g, 1, = c,/r?,

2.7)
—(Ra K Sc/k? Pr)(clf — 6,8} - cyrisin®.sing, (

Substituting (2.7) in boundary conditions (2.3) and equating to zero the determinant formed from the coef-
ficients of cj (i =1, ..., 4), we obtain

K(Pr——Sc)p(1+2n—%)
5E—1) (pPr— 7K Sq)

— 1. (2.8)

__y;_[ k3 (ctg k — cth &)
4(1—Fkothk)(1—Ectgh)

Equation (2.8), together with the equation for k in (2.6), determines the boundary of monotonic instability Ra,.
As w - = the equation for Ra, takes the form
Rag (v — o) = 815/(1 — K Sc/Pr). (2.9)

It is known [6] that instability of the diffusion heat transfer through a spherical cavity with a fixed surface
temperature develops at the critical Rayleigh number Ray = 815. The change by a factor (1 — KSc/ Pr) in the
present problem can be explained as follows.

Let us consider the virtual displacement of a volume AV in a liquid heated from below. An upward dis-
placement brings the element AV into a region whose temperature is AT lower and where the concentration of
the heavy component is AC ~ KAT less. Diffusion solution (2.1} is unstable if excess heavy component diffuses
from the volume AV (characteristic time Tg~ AC /D ~ KAT /D) but the volume is unable to cool (character-
istic cooling time 77 ~ AT /y). Heating from below is unstable if Tg/ 7T ~ KSc/ Pr < 1 and the critical Ray~
leigh number [cf, 2.9)] differs from &15 by a factor (1 — KSc¢/ Pr).

In order to determine the boundary of oscillatory instability, we substitute A = iw in (2.5) and eliminate

By= 0, ko= k, k== ik,

2.10)
(1+8¢) — Ra (‘1 1+ 8¢ KPr)

14+ Pr Sc

Using (2.10) and (2.4), we write the general solution of system (2.2), satisfying the condition Te = 0 at infinity,
in the form

v = (&f 5 .8 — cg)r Xy (sin®-cos @),

T—Ra( o/ Cof R )sm\‘} -sin @,

ioPr — k¢ 7 {0 Pr— k2 io Pr
X Se p ; (2.11}
_ S ¢y L [ . ey
¢=Razp (zmSc—Az TioSe B T Lms)”nﬁ sin ¢,

1— 1 . :
= ¢, exp {(l—- 1)]/ ](]/)m:r cmrﬂ) sin¥-sing.

Substituting (2.11) in (2,3), we obtain a system of homogeneous algebraic equations. In the general case
the condition of compatibility of these equations leads to clumsy expressions. In the particular case as ® —
the system is compatible if 2k! = 815, This rclation, together with 2.10), (2.5), gives the boundary of oscil-
latory instability Ra and the frequency w.



§3. In order to study the effect of the terms proportional to the drift velocity u in (1.3), we will consider
the following model problem. Let there be a liquid-filled vertical slit in the solid. The dimensions of the slit
in the directions of the x and z axes are infinitely large. Lateral heating produces convective motion in the
cavity. As a result of the solution effects described above the boundaries of the cavity should drift in the direc-
tion of the temperature gradient at infinity A (A is directed along the y axis of the Cartesian coordinate system;
see Sec. 1). We denote the drift velocity of the left (colder) boundary by u_ and that of the right (hotter) bound-
ary by uy. Att= 0 let the width of the cavity be equal to 24,; then at time t the width will be equal to 24 = 2a, —
u_t + u,t. The center of the cavity (y = 0) migrates at the velocity u = (u- +u_)/2,

In this problem the distribution df velocities, temperatures, and concentrations is described by convec-
tion equations (1.3) (here, as the unit of length it is necessary to take the half-width of the slit 4, the other
units being the same as in Sec. 1). The boundary conditions take the form

To=y at y = =00,
v=0,T=T, C=KT, 3.1)
dT/0y — %07, /9y = yuy, 0C/0y = pu-. at y = x1.
Problem (1.3), (3.1) has the exact solution (3 /8t = 0)
T = ¢;+ o — (1/2)Gr Pruy?,
C = c;-+ ey + (1/2)GrSc Kuy?,
Toly > 0) = y + csexp(—oGruy) + ¢ T ly<<0) =y,
. Gru

2 3 .
v, =(6; ——cs)—%-+(cg—c4)% + 5 (Pr— K Sc)y* =+ o7 — cgy.
The constants of integration are determined from (3.1). We will write down some of them:
o= —(1 + GrPru/2) + (yu~+ z + GruPr), c;="yu_-+ = + GruPr,

(HA‘ScGr)
-0

The drift velocity

- o _ L, =K Grsel
u—n/(\—K— v — G Pr - perrbc/‘.

Clearly, the right (hotter) wall moves faster than the left: The cavity grows wider with time. However,
the rate of this process is KSc Gr/p times less than the drift rate u.

In a closed volume, as a result of the incompressibility of the liquid, these effects will generally cause
stresses in the crystal; the cavity will not expand.

We will now compare the results obtained with the experimental data. It follows from (1.6), (2.1) that at
small Gr the drift of the liquid inclusions is determined by diffusion within the inclusion and that the drift
velocity does not depend on the dimensions of the cavity. In the case of lateral heating the correction to the
drift velocity u, is directed upward and, hence, has practically no effect on the velocity in the direction of the
temperature gradient A. Accordingly, in the experiments [1] it is observed that the drift velocity does not de-
pend on the orientation of the temperature gradient at infinity.

At small Gr the convective effects change the direction of the drift velocity: The tangent of the angle be-
tween u and A is equal to Gr [u, |/ 11, !, where uy and u; have been written out in (1.6). The effect of convection
on mass transfer and the drift of the inclusions has not been studied in this form. The drift velocity calculated
from (1.6) and the data of [2] on the properties of an aqueous solution of potassium chloride is equal to 1.1- 1078
cm/sec (for a spherical inclusion in the field of a temperature gradient of 22 deg /em), which is within the ex-
perimental bracket [2].

Our critical Rayleigh number corresponds to instability of diffusion mass transfer for a vertically heated
spherical inclusion. On the basis of the data of [2] for an aqueous KCl1 solution, Ray = —2, which corresponds
to heating from above. No experiments of this kind have been conducted.
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INVESTIGATION OF THE CONNECTION BETWEEN SOIL
AND GROUND WATERS WITH IRRIGATION

S. T. Rybakova and V. I. Sabinin UDC 532.546

With a close occurrence of the level of the ground waters, capillary influx from below can be a significant
source of replenishment of the moisture reserves of the root-inhabited layer. The value of this influx depends
on the depth of the occurrence of the level of the ground waters, the water and physical properties of the soils
of the aeration zone, the form of agricultural cultivations, and the meteorological conditions.

Determination of the rate of the capillary influx is required, in the first place, for calculation of irriga-
tion norms and the irrigation curve and, in the second place, to find the optimal depth of the occurrence of the
ground waters, with the aim of preventing processes of secondary salinization, occurring in the case of min~
eralized ground waters and saline soil waters of the aeration zone [1].

§1. We consider one-dimensional not-fully-established filtration in a vertical direction in a thickness
of soil (taking account of its inhomogeneous lithological makeup) from the surface of the ground to the level of
the ground waters.

From the solution of the differential equation describing the motion of the water in the unsaturated zone

2.2 [k(e,z)(g;i— 1)]— 18,2, 1) (1.1)
with the initial and boundary conditions
Pz, 0) =°2), 02l =0 (1.2)
—k(0p/oz — 1) = R(t), 2 =0, t > 0; (1.3)
P=0,z=1[t>0 (1.4)

and conditions of conjugation in the form of the equality of the pressures at the interface between the layers,

a determination is made of the pressure §(z, t) and, consequently, of the moisture content §(z, t), if, for each
lithological layer of the soil thickness under investigation, we know the main hydrophysical characteristics
9() and k(@) [or k)], which are here assumed to be single-valued.

The function £(8, z, t) in Eq. (1.1) takes account of the absorption of moisture by the roots of plants in the
region 0 =< z = zy(t), wherezy(t) is the thickness of the root zone. For z > z,, we assume that f = 0.

The rate of capillary influx from the ground waters into the aeration zone v is found from the balance
equation
Zy

v() =% R+ {15, (1.5)
1}
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